820763 - AET - Thermal Energy Storage

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering
Teaching unit: 724 - MMT - Department of Heat Engines
Academic year: 2017
Degree: ERASMUS MUNDUS MASTER’S DEGREE IN ENVIRONMENTAL PATHWAYS FOR SUSTAINABLE ENERGY SYSTEMS (Syllabus 2012). (Teaching unit Optional)
MASTER’S DEGREE IN ENERGY ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER’S DEGREE IN ENERGY ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5 Teaching languages: English

Teaching staff
Coordinator: Ivette Rodríguez Pérez / Yolanda Calventus Sole.
Others: Yolanda Calventus Sole
Ivette Rodríguez Pérez
Joaquim Rigola Serrano
Castro Gonzalez, Jesus

Opening hours
Timetable: Tuesday 10-12h, Wednesday 16-18h, Thursday 15-17h

Prior skills
Fundamental aspects of thermodynamics, fluid mechanics and heat transfer and mass transfer

Requirements
Those equivalent to have passed the Master leveling course

Degree competences to which the subject contributes
Specific:
CEMT-1. Understand, describe and analyse, in a clear and comprehensive manner, the entire energy conversion chain, from its status as an energy source to its use as an energy service. They will also be able to identify, describe and analyse the situation and characteristics of the various energy resources and end uses of energy, in their economic, social and environmental dimensions, and to make value judgments.
CEMT-5. Employ technical and economic criteria to select the most appropriate thermal equipment for a given application, dimension thermal equipment and facilities, and recognise and evaluate the newest technological applications in the production, transportation, distribution, storage and use of thermal energy.
CEMT-7. Analyse the performance of equipment and facilities in operation to carry out a diagnostic assessment of the use system and establish measures to improve their energy efficiency.
CEMT-6. Employ technical and economic criteria to select the most appropriate electrical equipment for a given application, dimension thermal equipment and facilities, and recognise and evaluate the newest technology applications in the field of production, transport, distribution, storage and use of electric energy.
In the course a description of the new energy paradigm of distributed generation is presented. In this panorama the accumulation of thermal energy / thermochemical plays an important role in order to decouple power generation from consumption. It also gives a detailed description of the technologies most used in thermal and thermochemical energy storage such as thermal energy storage for sensitive and / or latent heat, fuel and cooling adsorption and absorption.

Teaching methodology

- Lecture or conferences (EXP): Lectures taught by the professors of the course as well as invited lectures.
- Interactive classes (parts): resolution of exercises, collective discussions with both the teacher and the students. Presentation by the students of exercises carried out individually or in small groups.
- Oriented theoretical-practical works (TD): completion of a classroom activity, theoretical or practical, carried out individually or in small groups with the teacher's guidance.
- Project, activity or work of reduced scope (PR): Self-learning based on accomplishing an activity of reduced scope, individually or in small groups, just applying the knowledge acquired.
- Project or work of broader scope (PA): Self-learning based on accomplishing an activity of broader scope, individually or in small groups, just applying the knowledge acquired.
- Assessment exam (EV).

Learning objectives of the subject

In the course a description of the new energy paradigm of distributed generation is presented. In this panorama the accumulation of thermal energy / thermochemical plays an important role in order to decouple power generation from consumption. It also gives a detailed description of the technologies most used in thermal and thermochemical energy storage such as thermal energy storage for sensitive and / or latent heat, fuel and cooling adsorption and absorption.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>0h</th>
<th>0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>30h</td>
<td>24.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>10h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>85h</td>
<td>68.00%</td>
</tr>
</tbody>
</table>
820763 - AET - Thermal Energy Storage

Content

<table>
<thead>
<tr>
<th>Energy audits</th>
<th>Learning time: 17h</th>
</tr>
</thead>
</table>
| **Description:** Energy, exergy and other performance indicators. Using energy storage and heat pumps. Distributed generation and energy storage systems: co-generation, thermal cycles, heating and cooling networks. | Laboratory classes: 4h
Guided activities: 2h
Self study: 11h |
| **Related activities:**
- Lectures or conferences
- Interactive classes
- Oriented theoretical-practical works
- Project, activity or work of reduced scope
- Project, activity or work of broader scope | |
| **Specific objectives:**
Review concepts of energy and exergy efficiencies
Introduce students to the concept of distributed energy. | |

<table>
<thead>
<tr>
<th>Sensible heat storage</th>
<th>Learning time: 17h</th>
</tr>
</thead>
</table>
| **Description:** Passive and active systems. Main means of accumulation. Importance of thermal stratification. Strategies to enhance the thermal stratification. Quantification of thermal stratification: methods based on energy and exergy balances. Modelling the accumulation system. | Laboratory classes: 4h
Guided activities: 2h
Self study: 11h |
| **Related activities:**
- Lectures or conferences
- Interactive classes
- Oriented theoretical-practical works
- Project, activity or work of reduced scope
- Project, activity or work of broader scope | |
| **Specific objectives:**
Description of thermal energy storage systems for heat sensitive.
Introduce the students to the modeling of these systems. | |
820763 - AET - Thermal Energy Storage

Latent heat storage

Learning time: 19h
- Laboratory classes: 4h
- Guided activities: 2h
- Self study: 13h

Description:
Selection of phase change materials depending on the application. Types of storage systems by change of phase. Modeling of phase change systems.

Related activities:
- Lectures or conferences
- Interactive classes
- Oriented theoretical-practical works
- Project, activity or work of reduced scope
- Project, activity or work of broader scope

Specific objectives:
- Description of thermal energy storage systems by latent heat.
- Introduce students to the modeling of these systems.

Thermal Storage Systems in concentrated solar power plants

Learning time: 16h
- Laboratory classes: 4h
- Guided activities: 1h
- Self study: 11h

Description:
Importance of energy storage in solar-thermal plants. Taxonomy of the storage systems. Main storage media: advantages and disadvantages. Thermal energy storage system on the plant layout. Cost of accumulation system.

Related activities:
- Lectures or conferences
- Interactive classes
- Oriented theoretical-practical works
- Project, activity or work of reduced scope
- Project, activity or work of broader scope

Specific objectives:
- Introduce the student into the different technologies which might be used in CSP for thermal energy storage and the role of thermal energy storage.
- Know the different possibilities of operation of a storage system in a CSP plant.
- Introduce in the analysis of the cost of the system and its impact in the LCOE.
Thermo-chemical heat storage

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures or conferences</td>
</tr>
<tr>
<td>Interactive classes</td>
</tr>
<tr>
<td>Oriented theoretical-practical works</td>
</tr>
<tr>
<td>Project, activity or work of reduced scope</td>
</tr>
<tr>
<td>Project, activity or work of broader scope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the physical principle of sorption systems.</td>
</tr>
<tr>
<td>Description of existing technologies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Guided activities: 1h</td>
</tr>
</tbody>
</table>

Electro-chemical heat storage

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel cells: theoretical basis. Operational fuel cells. Technological development of different types of batteries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures or conferences</td>
</tr>
<tr>
<td>Interactive classes</td>
</tr>
<tr>
<td>Oriented theoretical-practical works</td>
</tr>
<tr>
<td>Project, activity or work of reduced scope</td>
</tr>
<tr>
<td>Project, activity or work of broader scope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduce the student into the technology of fuel cells.</td>
</tr>
<tr>
<td>Description of existing technologies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time: 21h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>Guided activities: 2h 30m</td>
</tr>
<tr>
<td>Self study: 13h</td>
</tr>
</tbody>
</table>
Hydrogen, a vector of clean energy

Description:
Obtention and storage of hydrogen. Processing of fuels used in different types of batteries. Conventional and non-conventional methods.

Related activities:
- Lectures or conferences
- Interactive classes
- Oriented theoretical-practical works
- Project, activity or work of reduced scope
- Project, activity or work of broader scope

Specific objectives:
Description of how to obtain and store hydrogen. Description of fuels used in different types of batteries.

Learning time: 16h 30m
- Laboratory classes: 4h
- Guided activities: 1h 30m
- Self study: 11h
Planning of activities

<table>
<thead>
<tr>
<th>Lectures and Theoretical Classes</th>
<th>Hours: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 5h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 15h</td>
</tr>
</tbody>
</table>

Description:
The content of the course is taught following an expository and participative model. The material is organized into different groups according to the content areas of knowledge of the subject.

Support materials:
Recommended bibliography. Slides of the course

Descriptions of the assignments due and their relation to the assessment:
This activity is evaluated in conjunction with activity 2 (problems) via assessment exercises and tests of knowledge.

Specific objectives:
At the end of this activity, students should be able to master the knowledge, consolidate and apply them correctly to various technical problems. Moreover, being a subject techno applied the lectures should serve as a complement to other technical subjects related to the field heat as Refrigeration and Solar Heat Engines.

<table>
<thead>
<tr>
<th>Participative Classes</th>
<th>Hours: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 5h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 15h</td>
</tr>
</tbody>
</table>

Description:
During these activities, problems and exercises will be conducted using a participatory model class. On each topic, there will be some problems in class so that students can acquire the necessary methodology to carry out their resolution: simplifying assumptions, numerical resolution, discussion of the results.

Support materials:
Basic and complementary bibliography. Teacher slides

Descriptions of the assignments due and their relation to the assessment:
This activity is evaluated in conjunction with activity 1 (theory) via assessment exercises and tests of knowledge.

Specific objectives:
At the end of this activity, students should be able to apply their theoretical knowledge to solve different kinds of problems. Given the methodology the student should be able to:
1. Understand and analyze the problem statement.
2. Set up and develop a methodology for the resolution of the problem
3. Solve the problem with a suitable resolution algorithm.
4. Critically interpret the results.

<table>
<thead>
<tr>
<th>Oriented Theoretical-Practical Works</th>
<th>Hours: 17h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guided activities: 4h 30m</td>
</tr>
<tr>
<td></td>
<td>Self study: 5h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 7h 30m</td>
</tr>
</tbody>
</table>
Description:
The works consist of solving small problems, which the basic data can be both from the results of a laboratory or proposed by the professor. The structure to be followed:
- Set up of the practice following the guidelines given via the professor notes.
- The students will be organised in small groups of 2-3 students and the maximum duration of the activity will be 2 hours.
- Results and discussion
- Completion of a report on the results carried out considering the questions posed by the professor and the conclusions drawn. This report will be evaluated together with the completion of the practice.

Support materials:
- Bibliography and professor notes

Descriptions of the assignments due and their relation to the assessment:
- Report on the results

Specific objectives:
- Consolidate the knowledge acquired in theory and practice classes.

Reduced scope work

<table>
<thead>
<tr>
<th>Hours: 25h</th>
<th>Self study: 25h</th>
</tr>
</thead>
</table>

Description:
To solve complex problems based on situations posed by the teacher.

Support materials:
- Bibliography and professor notes

Descriptions of the assignments due and their relation to the assessment:
- Report on the results

Specific objectives:
- Consolidate the knowledge acquired in theory and practice classes.

Broader scope work

<table>
<thead>
<tr>
<th>Hours: 40h</th>
<th>Self study: 40h</th>
</tr>
</thead>
</table>

Description:
The student will deepen into a subject and will solve a problem in which there must be necessary to apply different concepts acquired in the course. It is expected that the student is capable of using the different methodologies taught in class in order to accomplish the work.

Descriptions of the assignments due and their relation to the assessment:
- Report on the results

Specific objectives:
- Expand and consolidate the knowledge acquired in theory and practice classes.

Assessment exams

<table>
<thead>
<tr>
<th>Hours: 3h</th>
<th>Guided activities: 3h</th>
</tr>
</thead>
</table>

820763 - AET - Thermal Energy Storage

Description:
Theoretical and practice exercises on the different subjects of the course will be assessed

Support materials:
Written questionary

Descriptions of the assignments due and their relation to the assessment:
The posed questions and their answers on the different topics will be handed in to the professor at the end of the exam

Specific objectives:
Assess the acquired knowledge throughout the course

Qualification system

- Final exam (PE): 50%
- Assessment exercises (individually or in small groups) (TR): 40%
- Attendance and participation in classes and laboratories (AP): 5%
- Quality and performance of the work in groups (TG): 5%

Regulations for carrying out activities

- Final exam (PE): There will be a final exam for the course. Students must complete both theoretical questions and problems related to theoretical and practical content of the course. Reviews and / or complaints regarding exams will be conducted in accordance with the dates and times established in the academic calendar.

- Assessment exercises (TR): Students must follow the instructions explained in class and contained in the work file that will be proposed to the students. As a result of these activities, the student must submit a report (preferably in pdf format) to the teacher, within the deadline fixed for each activity. The assessment will involve both its realization as a possible defense.

- Attendance and participation in classes and laboratories (AP): Laboratory practices are assessed both during the development of the lab and by accomplishing a practical exercises proposed; The report resulting from the lab will be handed in to the professor following the instructions given in class. The assessment will involve both practical realization, as a possible defense.

- Quality and performance of group work (TG): Practices and class exercises will be assessed individually or in small groups by means of their oral defense if necessary.
Bibliography

Basic:

Complementary:

Others resources:

Audiovisual material
Professor slides
Course slides

Computer material
Professor notes
Professor notes