240IBI32 - Medical Images

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering
Teaching unit: 723 - CS - Department of Computer Science
Academic year: 2017
Degree: MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 4,5
Teaching languages: English

Teaching staff

Coordinator: DANIELA TOST PARDELL

Opening hours

Timetable: On appointment by e-mail (dani@cs.upc.edu) o in-person

Prior skills

Capacity of searching bibliography
Initiative to carry on projects
Skills in ICT
Hability to schedule and plan work

Requirements

Skills in computer science, specifically programming (python)

Degree competences to which the subject contributes

Specific:

CEMEI16. Ability for the research management, development and technological innovation.

CEEAUT4. Apply vision techniques by computer, shape recognition and merging of multi-sensorial data in automated production systems.

CEEBI03. Identify and extract information of interest in the biomedical signs.

CEEBI04. Know how to apply the main methods which most of the treatment projects offer, analysis and visualization of medical images.

Teaching methodology

In this subject, a strong component of personal work is expected from students. In the theoretical sessions, the teacher will expose the needed concepts, give bibliographic references and present the corresponding works. In the lab sessions students will develop their requested work.

Learning objectives of the subject

To introduce students into the representation, visualisation and analysis of 2D ans 3D biomedical images: images characteristics, representation models image file formats, visualisation through surface extraction and direct volume visualization, and image analysis and processing.

At the end of the curs, we expect students to be able to construct a volumetric model, to visualise it, to extract and visualise selected iso-surfaces and to apply analysis methodologies. Therefore, they have to learn images characteristics.
240IBI32 - Medical Images

and file formats; the fundamentals of volume visualization including the ray-tracing method as well as to edit transfer functions in order to obtain illustrative images; methods for surface extraction as Marching Cubes and for visualising the corresponding surfaces.

Students are also expected to work with existing applications such as Slicer and/or Paraview and also to devise their own applications using VTK and ITK libraries.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 112h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>27h</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>13h 30m</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
</tr>
<tr>
<td>Self study:</td>
<td>72h</td>
</tr>
</tbody>
</table>

- Hours large group: 27h (24.00%)
- Hours small group: 13h 30m (12.00%)
- Guided activities: 0h (0.00%)
- Self study: 72h (64.00%)
Content

Introduction

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>
| 1) Origins
2) Acquisition methods
3) Perspective
4) 2D images
5) 3D images
6) Data and applications |

Learning time: 3h
Theory classes: 3h

Graphical interfaces

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to graphical user interfaces. Graphic area, menu, panel.</td>
</tr>
</tbody>
</table>

Related activities:
Implementation of the project's GUI

<table>
<thead>
<tr>
<th>Learning time: 26h</th>
</tr>
</thead>
</table>
| Theory classes: 5h
Laboratory classes: 3h
Self study: 18h |

Medical Images

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>
| Medical Image Representation
Creation of a medical image
Reading of a medical image
Filtering processing
Analysis
Segmentation |

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
</table>
| Learn to create a medical image, read it and know how to interpret its content
Know the basics of image processing and know how to apply filtering techniques using high-level libraries and applications
Know the basics of image analysis and know how to apply segmentation techniques using high-level libraries and applications |

<table>
<thead>
<tr>
<th>Learning time: 25h 30m</th>
</tr>
</thead>
</table>
| Theory classes: 5h
Laboratory classes: 3h 30m
Self study: 17h |

For each topic a test will be requested during the next theoretic session and a lab work will be delivered. There will be 3 tests (NTi, i= 1...3) and 3 lab works (NLi, i= 1...3). Besides, each student will have to realize a work of integration and extension of the lab work, and present it orally (NP). The final mark will be computed as:
\[NF = \sum (NTi \times 0.15 + NLi \times 0.1) + NP \times 0.25 \] for i= 1...3
Students who have obtained a score of less than 5 may attend the final exam of January 25, which will be theoretical and practical and will cover all the subjects of the course.

Bibliography

Complementary:

Others resources:

Papers of the following jounals (to spacificy):
- IEEE Transactions on Visualization and Computer Graphics
- ACM Computer Graphics
- Computer Graphics Forum
- Computers & Graphics

Computer applications:
- 3D Slicer: www.slicer.org/
- itk: www.itk.org
- vtk: www.vtk.org

Audiovisual material

Nom recurs

Resource