240IBI21 - Biomechanics

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering
Teaching unit: 712 - EM - Department of Mechanical Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 4,5 Teaching languages: English

Teaching staff
Coordinator: Font Llagunes, Josep Maria
Others: Pàmies Vilà, Rosa

Requirements
Knowledge on rigid body kinematics and dynamics (vectorial formulation).

Degree competences to which the subject contributes
Specific:
CEEBI01. Ability to develop biomechanical models of the musculo-skeletal system based on the anthropometry of the human body and the mechanical laws of movement.

Teaching methodology
- Theoretical and practical face-to-face class (classroom, computer classroom and lab).
- Scheduled self study.
- Cooperative learning.
- Learning based on projects, problems and cases.

Learning objectives of the subject
The general learning objectives of the course are:
- Know tools for the biomechanical analysis of human motion, based on mathematical models that take into account the body anthropometry.
- Apply kinematic and kinetic descriptors to human motion.
- Apply mechanical laws and principles to anatomical structures.
- Analyze the human body motion from data measured at the lab.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 112h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>27h</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>13h 30m</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
</tr>
<tr>
<td>Self study:</td>
<td>72h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>27h</th>
<th>12.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>13h 30m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>27h</td>
<td></td>
</tr>
<tr>
<td>12.00%</td>
<td></td>
</tr>
<tr>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>64.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

Kinematics

Learning time: 13h 30m
Practical classes: 9h
Laboratory classes: 4h 30m

Description:

Vectorial dynamics

Learning time: 18h
Practical classes: 12h
Laboratory classes: 6h

Description:

Energetics

Learning time: 9h
Practical classes: 6h
Laboratory classes: 3h

Description:
Qualification system

Global course grade (NF) will be based on the following partial grades:

\[NF = 0.20 \times Nac + 0.30 \times Ntm + 0.50 \times Nef \]

Reevaluation:

This exam is available to the students that have attended the final ordinary exam and that have submitted all the continuous evaluation works. The reevaluation exam has the same format as the ordinary final exam.

The grade of the reevaluation exam (Nre) replaces the grade Nef in the equation to calculate the global course grade (NF).

During the spring semester of the 2019-2020 academic year, and as a consequence of the health crisis due to Covid19, the grading method will be:

Global course grade (NF) will be based on the following partial grades:

\[NF = 0.30 \times Nac + 0.40 \times Ntm + 0.30 \times Nef \]

Bibliography

Basic:

Complementary:

