Degree competences to which the subject contributes

Specific:
4. The student will be able to model, formulate and solve problems of control, taking into account its uncertainty, by Fuzzy logic based controllers.
5. The student will be able to select and program pattern recognition methods and learning based on the type of problem, after distinguishing if the situation so requires

General:
1. Ability to conduct research, development and innovation in the field of systems engineering, control and robotics, and as to direct the development of engineering solutions in new or unfamiliar environments, linking creativity, innovation and transfer of technology
2. Ability to reason and act based on the so-called culture of safety and sustainability

Transversal:
6. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
7. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

CT6. (ENG) Capacitat d’adaptació als canvis, sent capaç d’aplicar tecnologies noves i avançades i altres progressos rellevants, amb iniciativa i espírit innovador.

CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

07 AAT. SELF-DIRECTED LEARNING. Detecting gaps in one’s knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one’s knowledge.

Teaching methodology
The methodology of the course combines master classes, laboratory sessions and autonomous learning through the development of problem assignments, scientific papers analysis and projects development.

Learning objectives of the subject
Learning Outcomes:
At the end of the course the student should be able:
- To identify, select and implement machine learning, selection of features, and pattern recognition methods according to the problem's characteristics
- To suitably represent the structured spatiotemporal information
- To use numerical methods for optimization, machine learning algorithms and pattern recognition systems by considering conventional software packages.

Mandatory Contents:
- Linear models for clustering, classification, and regression.
- Artificial neural networks, support vector machines and kernel methods.
- Learning by demonstration and graphical models.
- Continuous latent variables and sequential data.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>27h</th>
<th>18.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>27h</td>
<td>18.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>96h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
240AR022 - Pattern Recognition & Machine Learning

Content

<table>
<thead>
<tr>
<th>Exploratory data analysis</th>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

- Visualization of multidimensional data
- Data clustering algorithms
- Dimensionality reduction and Principal Component Analysis
- Data imputation algorithms
- Feature extraction
- Independent Component Analysis

Related activities:
- Master class, problem solving and independent learning through exercises

<table>
<thead>
<tr>
<th>Probabilistic Models</th>
<th>Learning time: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

- Discriminant analysis
- Probabilistic models for classification
- Mixture Models and the Expectation-Maximization algorithm
- Parameter estimation in probabilistic models
- Classification and Regression Trees

<table>
<thead>
<tr>
<th>Neural Networks and Deep Learning</th>
<th>Learning time: 26h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 16h</td>
</tr>
</tbody>
</table>

- NN structure and learning
- Feed forward NN and Back Propagation
- Radial Basis Functions
- Regularization of NN
- Deep Learning methods
The evaluation system will consist on the following elements:

- E1. Paper-based exams (40%)
- E2. Questions, test, exercises, short reports (25%)
- E3. Project report (35%)
- E4. Re-evaluation, equivalent to E1 (40%)

Bibliography

Basic: